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Abstract

A detailed theoretical description of the signal formation in the presence of mesoscopic structure-specific magnetic field inho-

mogeneities is presented in the framework of the Gaussian phase distribution approximation for two geometrical models of the field

inhomogeneity sources—impermeable spheres and infinitely long cylinders. Analytical expressions for free induction decay (FID)

and spin echo (SE) signal attenuation functions CðtÞ � � ln SðtÞ are obtained and comparison with the case of unrestricted diffusion

(susceptibility inclusions with freely permeable surfaces) is provided. For short times, the leading term in the FID signal attenuation

function is proportional to t2 similar to the case of unrestricted diffusion; the next term behaves as t3 as compared to t5=2 for the

‘‘permeable’’ case. For the SE signal, the leading term is proportional to t3 as compared to t5=2 for unrestricted diffusion. It is shown

that the t3 approximation can be used for an adequate description of the SE signal only for extremely short times compared to a

characteristic diffusion time. In the long-time limit, the attenuation function in the impermeable and permeable sphere model

contains not only terms linear in time, but also important terms proportional to t1=2. In the cylindrical geometry, the leading term in

the long-time expansion of the attenuation function is proportional to t ln t for both the permeable and impermeable models.

Application to description of MR signal in biological tissues in the presence of blood vessel networks and contrast agents is dis-

cussed. The validity criterion of the Gaussian approximation is also proposed.

� 2003 Elsevier Inc. All rights reserved.
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1. Introduction

In a previous paper [1], the MR signal formation in

the presence of structure-specific magnetic field inho-

mogeneities was analyzed in the case of unrestricted

diffusion, in which the surfaces of the magnetized objects

inducing the mesoscopic field inhomogeneities were
considered to be freely permeable for diffusing spins.

The problem was analyzed in the framework of a model,

according to which the magnetized objects (blood cap-

illaries, red blood cells, etc.) occupying a small volume

fraction f (diluted system) with a magnetic susceptibility

vi are embedded in a given medium (tissue matrix) with

a magnetic susceptibility ve. General results have been
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obtained for objects of arbitrary geometry and explicit

expressions for MR signal time dependence have been

found for some specific geometries of the objects.

However, in many real situations the surfaces of the

magnetized objects are not permeable to nuclear spins.

Typical examples include superparamagnetic contrast

agents, the venous blood vessel network in the brain or
muscles, containing deoxygenated blood as a source of

inhomogeneous field. Therefore, a theory of MR signal

formation in such systems should account for this fact,

and this is the aim of the present study. As in [1], the signal

will be analyzed in the Gaussian approximation for pha-

ses accumulated by diffusing spins. In the case of unre-

stricted diffusion, where the solution of the diffusion

equation is well known, some general expressions for
the correlation and signal attenuation functions (see

below) are available for an arbitrary shape of the objects.
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In contrast, when the objects� surfaces are impermeable
for spins diffusing outside the objects, the solution of the

diffusion equation depends on the specific geometry of the

objects through boundary conditions at these surfaces.

Hence, the problem should be solved for each objects�
geometry separately. In the present paper, we provide

such a solution for spherical and cylindrical objects.

As the objects� surfaces are impermeable for diffusing

spins, all the spins can be divided into two pools that do
not mix with each other and the total signal is a sum of

internal, Si, and external, Se, parts:

SðtÞ ¼ SiðtÞ þ SeðtÞ: ð1Þ
The signal Si for the case of randomly oriented ellipsoids

of revolution (spheroids) was found in [2] and will be

briefly discussed here. The ‘‘outer sphere’’ model, when

spins diffuse outside impermeable spheres, has been ana-

lyzed in [3,4] in the context of dipolar interaction between

diffusing spins (the correlation function GðtÞ and its

Fourier transformation (spectral density) have been
found). In what follows, we present explicit expressions

for the MR signal time dependence in two models of im-

permeable magnetized objects: spheres and infinitely long

cylinders. Besides, numerical simulations of the signal are

made and a validity criterion of the Gaussian approxi-

mation is proposed. The theory is applied for describing

theMRsignal in biological tissues in the presence of blood

vessel network and superparamagnetic contrast agents.
2. General approach (external pool)

In the Gaussian approximation (the framework has

been discussed in [1]), the MR signal from the spins

diffusing in an inhomogeneous magnetic field induced by

randomly distributed and randomly oriented magne-
tized objects can be written in the form

SeðtÞ ¼ S0eðtÞsðtÞ; sðtÞ ¼ exp½�CðtÞ�; ð2Þ
where the factor S0eðtÞ describes the signal time depen-

dence from the external pool of spins in the absence of

magnetic field inhomogeneities; the function CðtÞ, which
will be referred to as a signal attenuation function, de-

scribes the signal attenuation due to the presence of

magnetized objects. For the FID signal (experiment with

a single 90� RF pulse followed by a readout period t)
and the SE signal (experiment with 90�–t=2–180�–t=2-
signal) the signal attenuation functions are:

CFIDðtÞ ¼
Z t

0

dsðt � sÞGðsÞ;

CSEðtÞ ¼
Z t

0

dsðt � sÞ½Gðs=2Þ � GðsÞ�:
ð3Þ

Here GðtÞ is the frequency correlation function. For a
uniform initial distribution of molecules diffusing out-

side the objects,
GðtÞ ¼ 1

Ve Ve

drdr0xðrÞxðr0ÞP ðr; r0; tÞ : ð4Þ

The integration in Eq. (4) is over the volume of the

external pool Ve, the angular brackets in Eq. (4) mean

averaging over all possible positions and orientations of
the objects, xðrÞ ¼ cHðrÞ is the local NMR frequency at

the position r, c is the nuclear gyromagnetic ratio, HðrÞ
is the projection of the local nuclear magnetic field HðrÞ
onto the direction of the external field H0. In the Lo-

rentzian approximation (see, e.g. [5]), which is fairly

precise for isotropic liquids, HðrÞ ¼ H0ð1þ 4pve=3Þþ
hðrÞ in the medium and HðrÞ ¼ H0ð1þ 4pvi=3Þ þ hðrÞ
inside the objects (we assume that the magnetic
susceptibilities vi;e are small enough to ignore effects

non-linear in v). In what follows, the frequency

x0 ¼ cH0ð1þ 4pve=3) will be considered as the fre-

quency of the rotating frame, and all results will be

presented with respect to this reference frequency. In

fact, the system under consideration can be treated as a

system consisting of themagnetized objects with a relative

susceptibility Dv ¼ vi � ve embedded in a non-magnetic
medium with v ¼ 0. The Lorentz field in this approach

differs from zero only within the objects and is equal to

4pDvH0=3.An inhomogeneousmesoscopicmagneticfield

hðrÞ is induced by all the magnetized objects:

hðrÞ ¼
XN
n¼1

hnðr� RnÞ; ð5Þ

where hn is the magnetic field induced by the nth object,

n ¼ 1; 2; . . . ;N , located at the point Rn. The propagator

P ðr; r0; tÞ satisfies the diffusion equation

oP=ot ¼ D � r2P ð6Þ
with the initial condition P ðr; r0; 0Þ ¼ dðr� r0Þ (D is the

diffusion coefficient). In the case of diffusion restricted

by the objects� surfaces, the diffusion equation (6) should

be complemented by boundary conditions on the sur-

faces. For reflecting and non-depolarizing boundaries,

as we assume here, these conditions are

ðoP=onÞs ¼ 0; ð7Þ
where ðo=onÞs means a normal derivative at the object�s
surface.

For the case of a small volume fraction f � 1 of the

magnetized objects, averaging over objects� positions

reduces Eq. (4) to [1]

GðtÞ ¼ c2f
v0

Z Z
Ve

drdr0 P ðr; r0; tÞ � hðrÞhðr0Þ
� �

orientation

;

ð8Þ
where the magnetic field hðrÞ and the propagator

P ðr; r0; tÞ should be calculated in the presence of only a

single magnetized object (v0 is its volume). The solution
of the diffusion equation (6) with boundary conditions

(7) is different for different geometries and requires
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separate considerations. In what follows, we analyze two
geometries: spheres and infinitely long cylinders.
3. Impermeable spheres (external pool)

In this model, spins diffuse in the space between ran-

domly distributed spheres of radius R. For an isolated
sphere, the solution of the diffusion equation for the

propagator P ðr; r0; tÞ, with boundary condition on the

sphere surface corresponding to impermeable surfaces,

as well as the Laplace transform �GðpÞ of the correlation
function have been found in [3]. In our notation

�GðpÞ ¼ G0 �
R2

D
� ð4þ xÞ
ð9þ 9xþ 4x2 þ x3Þ ; ð9Þ

where x ¼ ðp=DÞ1=2R and

G0 ¼ Gð0Þ ¼ 4fðdxsÞ2

45
; dxs ¼ 4pcDvH0: ð10Þ

Performing the inverse Laplace transformation, the

correlation function GðtÞ can be written in the form

GðtÞ ¼ G0 �
X3
k¼1

Ak exp sx2k
� �

~U
�
� xks1=2

�
; ð11Þ

where ~UðxÞ ¼ 1� UðxÞ, UðxÞ is the error function [6],

s ¼ t=tD, tD ¼ R2=D is the characteristic diffusion time;

xk, k ¼ 1; 2; 3, are the roots of the cubic equation

9þ 9xþ 4x2 þ x3 ¼ 0, and

Ak ¼
xkð4þ xkÞ

ð9þ 8xk þ 3x2kÞ
: ð12Þ

An equivalent form of the correlation function in the

outer sphere model has been obtained in [4]. Approxi-
mate values of the roots xk and the coefficients Ak are:

x1 � �1:783; x2 ¼ x�3 � �1:108þ 1:954 i;

A1 � �0:925; A2 ¼ A�
3 � 0:962� 0:124 i:

ð13Þ

In the short- and long-time limits (s � 1 and s � 1,

respectively), the correlation function (11) takes the form:

GðtÞ ’ G0 �
1� 9sþ 36

p1=2
s3=2; s � 1;

1
6p1=2s3=2

; s � 1:

�
ð14Þ

Note that in the long-time limit, the correlation function

in the impermeable sphere model coincides with that

obtained in [1,7] for the spherical model in the case of

unrestricted diffusion.

Substituting the correlation function (11) in Eq. (3),

the external pool signal attenuation functions for the
FID and SE signals can be written in the form:

CFIDðtÞ ¼ G0t2D � 4s
9

(
� 2

3

s
p

� �1=2
þ 11

81

þ
X3
k¼1

Ak expðsx2kÞ
x4k

� ~U
�
� xks1=2

�)
; ð15Þ
CSEðtÞ ¼ G0t2D � 4s
9
� 2ð

ffiffiffi
8

p
� 1Þ

3

s
p

� �1=2

þ 11

27
þ
X3
k¼1

Ak

x4k
� 4 expðsx2k=2Þ~U

�h
� xkðs=2Þ1=2

�

� expðsx2kÞ~U
�
� xks1=2

�i)
: ð16Þ

When obtaining Eqs. (14)–(16), we used the identities

related xk and Ak:X3
k¼1

Ak ¼ 1;
X3
k¼1

Akxk ¼
X3
k¼1

Ak

xk
¼ 0;

X3
k¼1

Akx2k ¼ �9;

X3
k¼1

Ak

x2k
¼ � 4

9
;
X3
k¼1

Akx3k ¼ 27;
X3
k¼1

Ak

x3k
¼ 1

3
;

X3
k¼1

Akx4k ¼ �27;
X3
k¼1

Ak

x4k
¼ � 11

81
;
X3
k¼1

Ak

x5k
¼ 1

27
:

ð17Þ

At short times, t � tD, Eqs. (15) and (16) reduce to

CFIDðtÞ ’ G0t2D � 1

2
s2

	
� 3

2
s3 þ 144

35p1=2
s7=2 þOðs4Þ



;

CSEðtÞ ’ G0t2D � 3

4
s3

"
� 36ð4�

ffiffiffi
2

p
Þ

35p1=2
s7=2 þOðs4Þ

#
:

ð18Þ
In the long-time limit, t � tD, the contribution of the

sums in Eqs. (15) and (16) is proportional to� s�1=2 � 1;

using the identities (17), the external pool attenuation

functions reduce to

CFIDðtÞ ¼ G0t2D �
(
4s
9
� 2

3

s
p

� �1=2
:

þ 11

81
� 1

27ðpsÞ1=2
þOðs�3=2Þ

)
;

CSEðtÞ ¼ G0t2D � 4s
9

(
� 2ð

ffiffiffi
8

p
� 1Þ

3

s
p

� �1=2

þ 11

27
� ð4

ffiffiffi
2

p
� 1Þ

27ðpsÞ1=2
þOðs�3=2Þ

)
:

ð19Þ

4. Impermeable cylinders (external pool)

In this model, spins diffuse in the space between

randomly distributed and randomly oriented infinitely
long cylinders of radius R. For an isolated cylinder, the

solution to the diffusion equation (6) with boundary

conditions corresponding to the impermeable cylinder�s
surface is provided in Appendix A. The Laplace trans-

form of the correlation function �GðpÞ is given by Eq.

(A.17). Performing the inverse Laplace transformation,
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dephasing function si: an erroneous factor expðipÞ should be substi-

tuted by expðip=3Þ. Expressions for the short- and long-time behavior

of si are correct.
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after some tedious algebra, the correlation function GðtÞ
can be written in the form

GðtÞ ¼ G0 �
24

p2
�
Z 1

0

dx
expð�sx2Þ

x5 J 02
2 ðxÞ þ N 02

2 ðxÞ
� � ; ð20Þ

where G0 is given in Eq. (10), s ¼ t=tD, tD ¼ R2=D, J2ðxÞ,
and N2ðxÞ are the Bessel functions of the first and second

types, respectively; the prime denotes a derivative with

respect to the argument.

In the short- and long-time limits (s � 1 and s � 1,

respectively), the correlation function (20) takes the

form:

GðtÞ ’ 3

4
G0 �

1� 4sþ 32
3p1=2

s3=2; s � 1;
1
4s þ

ðln 4s�C�1Þ
32s3 ; s � 1:

(
ð21Þ

Note that the leading terms in the short- and long-

time expansion of GðtÞ, Eq. (21), differ from those in the

model of unrestricted diffusion with cylindrical objects

by the same numerical factor 3/4. Similar to the imper-

meable sphere model discussed in the previous section,

the second term in the short-time expansion of (21) is

linear in s, whereas in the case of unrestricted diffusion it
is proportional to s1=2 [1, Eq. (38)].

Substituting the correlation function (20) in Eq. (3),

we obtain the external pool signal attenuation functions

CðtÞ for the FID and SE signals:

CðtÞ ¼ G0t2D � 24
p2

�
Z 1

0

du
gðsu2Þ

u9 J 02
2 ðuÞ þ N 02

2 ðuÞ
� � ; ð22Þ

where

gFIDðxÞ ¼ expð�xÞ þ x� 1;

gSEðxÞ ¼ 4 expð�x=2Þ � expð�xÞ þ x� 3:
ð23Þ

At short times, t � tD, the correlation function is

described by Eq. (21) and CðtÞ reduces to

CFIDðtÞ ’G0t2D � 3

8
s2

	
� 1

2
s3þ 32

35p1=2
s7=2þOðs4Þ



;

CSEðtÞ ’G0t2D � 1

4
s3

"
� 8ð4�

ffiffiffi
2

p
Þ

35p1=2
s7=2þOðs4Þ

#
:

ð24Þ

Similar to the impermeable sphere model, the terms

proportional to s5=2 which are characteristic to the case

of unrestricted diffusion, are absent and the leading term

in the short-time expansion of the SE signal is propor-

tional to s3.
In the long-time limit, t � tD, the external pool at-

tenuation functions contain logarithmic terms:

CFIDðtÞ ¼ G0t2D � 3

16
s ln s

	
þC1sþC2 þOðs�1Þ



;

CSEðtÞ ¼ G0t2D � 3

16
s ln s

�
þC3sþ 3C2 þOðs�1Þ



;

ð25Þ

where C1 	 C4 are numerical constants:
C1 ¼
3ðC � 1Þ

16
þ C4 � 0:152;

C3 ¼
3ðC � 1� ln 4Þ

16
þ C4 � �0:108;

C2 ¼ � 12

p2

Z 1

0

du
u2

� d
du

1

u6 J 02
2 ðuÞ þ N 02

2 ðuÞ
� �

" #
� 0:047;

C4 ¼ � 24

p2

Z 1

0

du ln u � d
du

1

u6 J 02
2 ðuÞ þ N 02

2 ðuÞ
� �

" #
� 0:231

ð26Þ

and C � 0:577 is Euler�s constant.
5. Internal pool signal

Generally speaking, in the case of impermeable ob-

jects, the internal pool can also contribute to the MR

signal. Spheres and infinitely long cylinders are partic-

ular cases of ellipsoids of revolution. The internal

magnetic field Hi, induced by the external field H0

within the ellipsoids, is known to be uniform (effects of
the inhomogeneous magnetic field induced by other

magnetized objects are of the second order in f and are

ignored here) and dependent on an orientation of the

ellipsoid�s principal axes with respect to H0. Hence, al-

though the internal signal from any given ellipsoid does

not decay (aside from the T �
2 relaxation), the total in-

ternal signal Si from a set of ellipsoids with different

orientations attenuates in a FID experiment—a powder-
distribution-type effect. For uniformly distributed

and oriented spheroids, the internal signal has been

found in [2]:

SiðtÞ¼S0iðtÞ�siðtÞ;

siðtÞ¼
p
2jkj

� �1=2

�exp i
k
3

� �
� Cðjkj1=2Þ
h

� i sgnðkÞSðjkj1=2Þ
i
;

ð27Þ

where S0iðtÞ describes the signal time dependence due to

the intrinsic T �
2 relaxation, k ¼ ðdxstÞðnz � nxÞ, dxs is

given in Eq. (10), nz and nx are demagnetizing factors of

the spheroid along its principal axis and perpendicular

to it, respectively, CðxÞ and SðxÞ are Fresnel functions

(e.g. [6]). In the short- and long-time limits, Eq. (27)

reduces to1

si �
1� 2

45
k2 þ i 8

2835
k3; k � 1;

1
2

p
jkj

� �1=2
exp i � k

3
� p

4
sgnk

� �� �
; jkj � 1:

8<
: ð28Þ
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For spheres, nz ¼ nx ¼ 1=3, k 
 0, and siðtÞ ¼ 1. This
result is expected because orientation averaging for

spheres is meaningless and does not lead to signal at-

tenuation. For infinitely long cylinders, nz ¼ 0, nx ¼ 1=2,
and the internal signal is given by Eq. (27) with

k ¼ ðdxstÞ=2.
Fig. 1. The attenuation functions CðtÞ ðC ¼ � ln S=S0Þ for the FID and

SE signals as functions of dimensionless time s ¼ t=tD for the cases of

impermeable (solid lines) and permeable (dashed lines) spheres. S is the

signal from the external pool in the case of impermeable objects and the

total signal for permeable objects, both normalized to C0 ¼ G0t2D ¼
4=45 � ð4pcDvH0Þ2ðR2=DÞ2. Also shown the linear approximations for

CðtÞ in the long-time regime, corresponding to the mono-exponential

DR2 (or DR�
2) relaxation.

2 The short-time expansions of the SE signal (second lines in Eqs.

(34) and (41)) in [1] are given with misprints: the factor ðDt=R2Þ5=2
should be substituted by t5=2ðD=R2Þ1=2.
6. Discussion

In the case of ellipsoidal susceptibility inclusions, the

signal from the internal pool, Eq. (27), was discussed in

detail in [2]. Here we will concentrate on the discussion

of the signal from the external pool only. As mentioned

previously, such a separation is possible because in the

case of impermeable susceptibility inclusions, spins from

internal and external pools do not exchange and con-
tribute to the total signal additively. Besides, for a

number of experimental situations, the internal pool

gives zero or negligible contribution to the total signal.

Examples include ferrite particles when there is no intra-

particle water molecules; venous blood vessel networks

in which blood signal may be diminished by specially

designed experimental protocols that suppress the signal

from the moving blood, or reduced due to the very short
T2 relaxation time constant resulting either from high

level of deoxyhemoglobin, or high external magnetic

field, or high concentration of contrast agent.

The discussion of the external pool signal attenuation

function CðtÞ will be accompanied by comparison with

the case of unrestricted diffusion [1] when the signal decay

is characterized by a similar attenuation function Cð0ÞðtÞ
calculated in the same geometrical models of spherical
and cylindrical magnetized objects with freely permeable

surfaces (hereafter quantities for the freely diffusing spins

are marked by the upper index (0)). Intuitively, one could

expect that the difference between functions CðtÞ and

Cð0ÞðtÞ in the case of small volume fraction f should

vanish as f ! 0 because (a) the inhomogeneous magnetic

field outside the objects is identical in both the cases and

(b) even for freely permeable objects� surfaces, diffusing
spins spend very short time (relative time is proportional

to f � 1) within the objects. We will demonstrate

however that there are both quantitative and qualitative

differences between these two cases.

The time dependence of the functions CFIDðtÞ and

CSEðtÞ in the model of impermeable spheres (Eqs. (15)

and (16)) is shown in Fig. 1 (solid lines). The attenuation

functions Cð0Þ
FIDðtÞ and Cð0Þ

SEðtÞ calculated in the same
geometrical model of spherical magnetized objects in the

case of freely permeable spheres (unrestricted diffusion)

[1] are shown by dashed lines. As we see, for both FID

and SE signals CðtÞ > Cð0ÞðtÞ, i.e., the signal attenuates

stronger in the case of impermeable spheres. This fact

can be expected because in the case of unrestricted dif-

fusion, the attenuation functions Cð0Þ
FIDðtÞ and Cð0Þ

SEðtÞ
describe the ‘‘total signal’’ when the spins spend some

time within the spheres, where the local nuclear field is

homogeneous and, therefore, during this time their

contribution to the signal decay is absent. Hence, the

signal in this case decays more weakly than the signal

from the external pool in the case of impermeable

spheres, where spins all the time diffuse in the inhomo-

geneous magnetic field outside the spheres.
The time dependence of the functions CFIDðtÞ and

CSEðtÞ in the model of impermeable cylinders (Eqs. (22)

and (23)) is shown in Fig. 2 (solid lines). Dashed lines in

Fig. 2 correspond to the attenuation functions Cð0Þ
FIDðtÞ

and Cð0Þ
SEðtÞ calculated in the model of permeable cylin-

drical magnetized objects [1]. Opposite to the spherical

model, in the cylindrical model the signal for imperme-

able objects attenuates more weakly than in the case of
unrestricted diffusion: for both the FID and SE signal

CðtÞ < Cð0ÞðtÞ. This is due to the role of a powder-dis-

tribution-type effect that leads to an additional total

signal attenuation in the case of permeable cylinders and

does not make any contribution to Cð0ÞðtÞ in the case of

permeable spheres.

Comparing the short-time behavior of the signals in

the model of impermeable spheres (18) and cylinders
(21) with the corresponding expansions of Cð0ÞðtÞ for the
case of unrestricted diffusion (see Eqs. (34) and (41) in

[1]2), one can see that for the FID signal, the leading



Fig. 3. The relative error between the exact SE signal attenuation

function CSEðtÞ and the short time approximation ~CSEðtÞ including

only t3 term: e ¼ jCSE � ~CSEj=CSE � 100%.

Γ Γ
0

Fig. 2. The attenuation functions CðtÞ ðC ¼ � ln S=S0Þ for the FID and

SE signals as functions of dimensionless time s ¼ t=tD for the cases of

impermeable (solid lines) and permeable (dashed lines) infinitely long

cylinders. S is the signal from the external pool in the case of imper-

meable objects and the total signal for permeable objects, normalized

to C0 ¼ G0t2D ¼ 4=45 � ð4pcDvH0Þ2ðR2=DÞ2.
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term is quadratic in time for both CFIDðtÞ and Cð0Þ
FIDðtÞ.

However, the leading terms for the SE signal (and the

second terms for the FID signal) are different: t3 in CðtÞ
rather than t5=2 in Cð0ÞðtÞ. The origin of the t5=2-depen-
dence of the signal attenuation function at short times in

the case of unrestricted diffusion was explained in [1]: it

is connected with a dominant role of spins crossing the

objects� surfaces where the local field is discontinuous

and the Larmor frequency has a jump discontinuity. In

the impermeable models, spins diffuse only outside the

objects and there is no discontinuity in their Larmor

frequency. In this situation, the leading term in CSEðtÞ
demonstrates a ‘‘standard’’ t3—short-time behavior. In

particular, such a t3 time dependence of the attenuation

function can be obtained based on the assumption that

at short time, when a spin�s displacement is small, its

diffusion can be considered as unrestricted diffusion in

the constant local field gradients, and the attenuation

function for the SE signal is (see, e.g. [8–11]):

~CSEðtÞ ¼
D
12

c2hrhðrÞi2t3: ð29Þ

It is easy to verify that Eq. (29) leads (in our notations) to
~CSEðtÞ ¼ 3G0Dt3=4R2 for spheres and ~CSEðtÞ ¼ G0Dt3=4R2

for cylinders, which exactly coincide with the t3 terms in

the short time expansions of CSEðtÞ in Eqs. (18) and (24),

respectively. Note, however, that the presence of the

impermeable objects hinders spin diffusion near the

objects� surfaces. For short time, spins located within
the characteristic diffusion distance ðDtÞ1=2 encounter

the surfaces, a relative number of such spins being

proportional to ðDtÞ1=2 � ðs0=v0Þ, where ðs0=v0Þ is the

surface-to-volume ratio (for spheres and cylinders, this

ratio is 3=R and 2=R, respectively). This leads to a
decrease in effective diffusivity and can be taken into
account by substituting the diffusion coefficient D in Eq.

(29) by an effective diffusion coefficient D ! Deff ¼ D½1�
bðDtÞ1=2=R�, where b is a geometry-dependent numerical

coefficient (a similar short time dependence of the

effective diffusion coefficient in porous systems was

discussed in [12]). Hence, the restriction of diffusion by

the objects� surfaces modifies the t3 time dependence of

CSEðtÞ by generating an additional negative term pro-
portional to �D3=2t7=2=R3, as appears in Eqs. (18) and

(24). Due to the presence of such a t7=2 term, the time

interval where the cubic term adequately describes the

signal behavior is practically absent. This point is

demonstrated in Fig. 3, where a relative error is shown

between the exact attenuation function CSEðtÞ and the

short time approximation including only the t3 term.

Even for s � 0:01, the relative error is already about
20% for the sphere model and about 15% for the

cylindrical model, reaching at s � 0:1, 100 and 60%,

respectively. This result clearly demonstrates that the

t3-approximation can be used for an adequate descrip-

tion of the SE signal only for extremely short times

compared to the characteristic diffusion time tD.
The leading (linear in time) terms in the long-time

expansion of the signal attenuation function in the im-
permeable sphere model (19) describe a standard mono-

exponential DR2-relaxation (DR�
2 for the FID signal)

with DR2 ¼ DR�
2 ¼ 4G0tD=9, that differs by the numeri-

cal factor 9/10 from the corresponding quantity ob-

tained for the case of unrestricted diffusion where

DRð0Þ
2 ¼ DR�ð0Þ

2 ¼ 2G0tD=5 [1,3,7]. This difference was

first demonstrated in [3] and reiterated in [13]. It should

be mentioned, however, that the second terms in Eq.
(19) (proportional to s1=2) also increase with time and

their contribution must be included for correct inter-

pretation of experimental data. Describing experimental
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data for CðtÞ in the motional narrowing regime by a
linear function may lead to an erroneous value of DR2

(the same situation holds for the case of unrestricted

diffusion). The straight lines in Fig. 1 correspond to the

linear time dependence of the attenuation functions

(with the numerical coefficient 4/9 for CðtÞ and 2/5 for

Cð0ÞðtÞ). The s1=2-terms remain substantial up to very

large s because its relative contribution decreases with

time rather slowly (� s�1=2). For instance, even for
s ¼ t=tD ¼ 100, the difference between an exact result

and a linear approximation is still on the order of 10%.

The leading term in the long-time expansion of the

attenuation function in the impermeable cylinder model

(25) is proportional to s ln s and differs from the leading

term in the analogous expansion of Cð0ÞðtÞ by the factor

3/4 (Eq. (42) in [1]). Similar to the impermeable sphere

model, a correct interpretation of experimental data at
s � 1 requires accounting for not only this leading term

but also for the next term proportional to s.

6.1. Validity of the Gaussian approximation

The Gaussian approach was first proposed by Dou-

glass and McCall [14] for an analysis of MR signal in the

presence of a constant field gradient for the case of
unrestricted diffusion when it represents an exact solu-

tion to the problem. An adequateness of the Gaussian

approximation for different models of restricted diffu-

sion in the case of a constant field gradient was discussed

by many authors (see, e.g. [15–20]). If the field gradients

are non-uniform (as in the case discussed in the present

paper), the phase distribution function is also, in gen-

eral, not Gaussian. As to our best knowledge, there is no
detailed analysis of the validity of the Gaussian phase

approximation in such systems.

Generally, the Gaussian approximation is known to

be valid in two limiting cases. (A) For short times, when

phases accumulated by spins are small, juj � 1, and the

signal can be approximated by the second cumulant,

s ¼ hexpðiuÞi � expð�hu2i=2Þ. (B) In the motional

narrowing regime, when t � tD and the characteristic
diffusion time across field inhomogeneities, tD, is much

smaller than the characteristic dephasing time tc,
tD � tc, where we define

tc ¼ ðdxs=dÞ�1 ¼ 4p
d
cDvH0

� ��1

ð30Þ

the parameter d ¼ 3 in the case of spheres and d ¼ 2 for
the cylinders. In the case tD � tc, a diffusing spin sam-

ples all possible values of the magnetic field prior to the

signal substantially decreases. Under this condition,

the central limit theorem can be applied that leads to the

Gaussian phase distribution. However, a detailed

quantitative comparison of the Gaussian approximation

with exact results provided in [20] for some models of

restricted diffusion in the presence of a constant field
gradient demonstrated that in reality, a range of validity
of the Gaussian approximation is much broader than

the two limiting cases mentioned above. For instance, it

was demonstrated that for a SE signal this approxima-

tion is adequate for the description of MR signals cor-

responding to arbitrary relationship between tD and

tc—the maximum discrepancy between an exact SE

signal and that from the Gaussian approximation does

not exceed several percent while the signal decays to 1=e
of its initial value. For the FID signal, the Gaussian

approximation is shown to be an adequate for short

times and under condition tD 6 tc.
Obviously, in the problem of susceptibility induced

magnetic inhomogeneities, the criteria of applicability of

the Gaussian approximation in our models should relate

not only the characteristic times tD and tc but the volume

fraction f as well. Here we provide results of a numerical
analysis of the validity of the Gaussian approximation

based on computer (Monte–Carlo) simulation of the

MR signal attenuation in the presence of impermeable

magnetized inclusions (cylinder or sphere). For simula-

tions, we use two simplified models: a single cylinder of

the radius R located in the center of a rectangular box

with a square cross section of side 2A (the external field

H0 is perpendicular to the cylinder�s axis) and a single
sphere of the radius R located in the center of a cube 2A
on edge. For the case of small volume fraction f � 1,

such models are reasonable approximations for more

complicated models of uniformly distributed cylinders

and spheres described in the main text. The signal de-

pendence on the dimensionless time s ¼ t=tD is com-

pletely determined by the volume fraction f ¼ pðR=AÞd=
2d and the dimensionless parameter

p ¼ tc
tD

¼ Dd
4pcDvH0R2

: ð31Þ

In both the models, the FID and SE signals are calcu-
lated for 4 values of the volume fraction

f ¼ 0:03; 0:06; 0:09; 0:12, and for 5 values of the pa-

rameter p ¼ 0:02, 0.05, 0.1, 0.3, and 0.5. An exact time

dependence of the simulated FID and SE signals is

compared to its Gaussian approximation.

The time interval 06 s6 s�, where s� is time when the

signal has decayed by 1=e, sðs�Þ ¼ e�1, is of the most in-

terest from practical point of view. The simulations show
that the discrepancybetween the exact timedependence of

the signal sðsÞ and its Gaussian approximation sðGÞðsÞ
within this interval monotonically decreases with the

volume fraction and/or the parameter p increase. Note

also that the signal calculated in the Gaussian approxi-

mation is smaller than the real one, sðGÞðsÞ < sðsÞ.
To obtain a quantitative criterion of the validity of

the Gaussian approximation, we estimate a ‘‘proximity’’
of the Gaussian approximation sðGÞðs) to the exact signal

sðsÞ. A numerical quantity determining this proximity is

the mean square relative error �e between the curves



Fig. 4. The mean square relative error �e between the simulated FID

signal sðsÞ and its Gaussian approximation sðGÞðsÞ in the sphere model

as a function of the parameter f � p (dots). The solid line represents the

interpolation function (33).
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�e ¼ 1

n

Xn
j¼1

e2j

 !1=2

; ej ¼
sðsjÞ � sðGÞðsjÞ
� �

sðsjÞ
; ð32Þ

where sj ¼ js�=n, j ¼ 1; 2; . . . ; n is a set of equidistant

points on the interval (0; s�). An analysis shows that, in

fact, the quantity �e can be well described as a function of

product f � p. As an example, the function �e ¼ �eðf � pÞ for
the FID signal generated for the sphere model is shown

in Fig. 4 (dots). The numerically found dependence
�e ¼ �eðf � pÞ is pretty well interpolated by the exponential

function (solid line),3

�eðbÞ ’ A exp½�k � ðf � pÞ1=2�

¼ A exp

"
� k � fDd

4pcDvH0R2

� �1=2
#
; ð33Þ

where A � 1:25 and k � 27. For the SE signal in the

sphere model and the FID and SE signal in cylinder
model, the dependence �e ¼ �eðf � pÞ is similar to Eq. (33)

with slightly different numerical parameters A and k.
Thus, we can infer that the discrepancy between the

exact signal and its Gaussian approximation exponen-

tially fast decreases with the parameter f � p increases

and the qualitative criterion of the validity of the

Gaussian approximation is �e � 1, that requires

f � p ¼ fDd
4pcDvH0R2

> 1: ð34Þ

Note, however, that the coefficient k in Eq. (33) is not

small, k � 27. Therefore, if we are interested in an
3 A more detailed analysis shows that, in reality, the dependence of

the mean square relative error �e on the parameters f and p could be

more complicated: �e � expð�kfnpmÞ, where n and m are in the range

0:5–0:8. This issue will be addressed in more detail in a separate

publication.
accuracy of the Gaussian approximation up to 10%, for
instance, the criterion (34) becomes substantially ‘‘soft-

er’’: the Gaussian approximation describes the exact

signal on the interval (0; s�) if

f � p > 0:01 ðaccuracy 10%Þ;
f � p > 0:02 ðaccuracy 5%Þ: ð35Þ

It is interesting to compare the validity criterion of
the Gaussian approximation (34) with that of the static

dephasing regime [21]: p � 1 for cylinders and p � f�1=3

for spheres (in our notations). As shown experimentally

by Bowen et al. [22], the static dephasing regime actually

takes place under ‘‘soft’’ condition p < f�1=3 (for

spheres). It is easy to see that for f � 1 the validity cri-

teria of the Gaussian approximation and for the static

dephasing regime are just opposite to each other. If
f � 1, there exists an interval f�1=3 < p < f�1, where

neither the Gaussian approximation nor the static de-

phasing regime is valid. Note, however, that if the ‘‘soft’’

criterion of the Gaussian approximation is used,

f � p > 0:01, the intervals of validity of the Gaussian

approximation and the static dephasing regime could

overlap. It is also worth noting that in the Gaussian

regime and for t � tD, the signal decays mono-expo-
nentially (Eq. (19)) with the relaxation rate DR2 ¼ DR�

2

� ftD=t2c ¼ f=ptc. Whereas in the static dephasing re-

gime, DR�
2 � f=tc [21]. Consequently, in the static

dephasing regime when tD > tc, the relaxation process

goes faster than in the regime when the Gaussian

approximation is valid.

The inequality (34) can be considered in two ways.

First, for the volume fraction (and other parameters)
fixed, it puts an upper limit for the inclusions� radius R:

R <
fDd

4pcDvH0

� �1=2

: ð36Þ

If the inequality does not hold, the transition from the

Gaussian approximation to the static dephasing regime

should be expected. The validity of the static dephasing

regime [21] for sufficiently large radii of the inclusions

was numerically confirmed by Weisskoff et al. [23] and

Boxerman et al. [24] and experimentally by Bowen et al.

[22]. As the criteria of the Gaussian approximation and

the static dephasing regime are, to some extent, opposite
to each other, these studies implicitly confirm the

statement that the Gaussian approximation fails for

large radii of the magnetized inclusion.

On the other hand, the inequality (34) put a lower

limit for the volume fraction if the radius of the inclu-

sion is fixed:

f >
4pcDvH0R2

Dd
: ð37Þ

This result can be explained as follows. The inhomoge-

neous magnetic field induced by a magnetized inclusion

rapidly decreases with distance from the inclusion (as
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ðr=RÞ�2
for cylinders and ðr=RÞ�3

for spheres) and spins
located far from the inclusion do not contribute to the

signal decay. Whereas the Gaussian approximation sets

in (apart from the short-time regime) only when all spins

have mixed up by diffusion and lost their ‘‘individuality’’

defined by their initial positions. This process requires

time TD � A2=D � tD. Moreover, for the sufficiently

small volume fraction, TD turns out to be longer than s�

and the signal decays by the factor 1=e faster than the
spins have mixed up.

6.2. Blood vessel network

As an example of a real system, which can be de-

scribed by the models analyzed above, we consider

blood vessels in the brain, which form an interconnected

network of long tubes compared to their radii that range

from 3 to 5 lm for small capillaries to 10–50 lm and

higher for arterioles, veins, etc. A total volume fraction
of all blood vessels in the brain parenchyma is on the

order 2–4%. The magnetic susceptibility difference be-

tween interior of vessels and the surrounding space is

caused by paramagnetic deoxyhemoglobin in venous

blood, Dv ¼ Dv0ð1� Y ÞHcr, where Dv0 ¼ 0:27� 10�6 is

the susceptibility difference between the cytoplasm of

fully oxygenated and fully deoxygenated red blood cells

[25], Y is the blood oxygenation level, and Hcr is the
hematocrit. The mid-to-large vessels are impermeable

for water molecules and therefore their contribution to

the signal decay can be considered in the framework of

the approach discussed in the present paper. According

to the criterion (35), the Gaussian approximation pro-

vides the accuracy of 10%, if

fp ¼ fD
2pcDvH0R2

> 0:01 ð38Þ

(the parameter p is defined in Eq. (31) for cylinders,

d ¼ 2). Using the following typical values: magnetic field

H0 ¼ 1:5T, c ¼ 2:675� 108 ðs � TÞ�1
(proton gyromag-

netic ratio), venous blood oxygenation level Y ¼ 0:6,
hematocrit Hcr ¼ 0:4, water diffusion coefficient in the

brain D � 1lm2/ms, volume fraction f � 0:03, we infer
that for these values of the parameters, the Gaussian

approximation is valid for vessels with R6 5lm. This

range of blood vessels� radii corresponds mainly to small

capillaries, which are permeable for water molecules; for

their description, the approach developed in [1] for the

case of free diffusion can be used. As to impermeable

mid-to-large blood vessels with R > 5lm, the Gaussian

approximation provides an accuracy of 10% (or better)
for lower magnetic fields; in particular, for H0 ¼ 0:2T,
the same accuracy of 10% is achieved for R6 14lm.

The characteristic diffusion time tD for blood vessels

with R � 10lm is about 100ms. Consequently, for

t < 100ms, the signal attenuation function reveals its

short-time behavior (see Eq. (24)), whereas for t > 100
ms, the long-time t ln t-asymptotic expressions (25) can be
used.

6.3. MR contrast agents

Consider next the applicability of the Gaussian ap-

proximation (sphere model) for describing the MR sig-

nal in the presence of contrast agents, for instance,

superparamagnetic iron oxide nanoparticles. Typical
examples include MION and other iron oxide-based

nanoparticles [26,27] consisting of a single-crystal inner

core containing about n ¼ 2000 atoms of Fe organized

in the inverse spinel-type lattice, covered by a mean of

20–25 surface bound dextran molecules. A size of

MION is about 20 nm in diameter (in aqueous solution),

the core size is about 4.6 nm. The configuration of

dextran molecules is rather flexible and may allow water
diffusion within MION (but outside the core). Thus,

from the diffusion point of view, MION can be con-

sidered as a impermeable sphere with radius R � 2:3 nm.

The characteristic diffusion time for such particles is

extremely short (several nanoseconds); for any reason-

able time t � tD, the attenuation function is linear in

time and the signal decay in the Gaussian approxima-

tion can be described by the standard relaxation rate
(the linear term in the long-time regime, see Eqs. (19)) :

DR2 ¼ DR�
2 ¼

16

45
f
tD
t2c
; ð39Þ

where tc is the characteristic dephasing time defined in

Eq. (31) (for spheres d ¼ 3). In the presence of a strong

enough external magnetic field (>1.5 T), the superpara-

magnetic MION particles are saturated to their satura-

tion magnetization M , therefore

tc ¼
3

4pcM
ð40Þ

The magnetization M is determined by the number of Fe

atoms in the core, an average magnetic moment l per 1

atom Fe and the core�s volume:M ¼ nl=v0, v0 ¼ 4pR3=3.
The volume fraction f can be determined by the molar

concentration of Fe in the solution k: f ¼ kNav0=n,
Na ¼ 6:02� 1023 mol�1 is Avogadro�s number. Thus, the

relaxation rate can be written in the form:

DR2 ¼
p
15

8cl
3

� �2 kNan
DR

: ð41Þ

Experimentally [26], the relaxation rate of MION in the

aqueous solution is found to be DR2 ¼ 34:8ðmMsÞ�1
.

Substituting c ¼ 2:675� 108 (s T)�1, D ¼ 2:5lm2/ms,

n ¼ 2064, R ¼ 2:3 nm, we estimate the magnetic moment

per 1 atom Fe: l ¼ 1:34lB (lB ¼ 0:93� 10�20 erg/Gauss

is Bohr�s magneton) that is typical for spinel-type fer-

rites. The corresponding characteristic diffusion and

dephasing times are tD � 2 ns, tc � 18 ns, and p ¼
tc=tD � 9.
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It should be mentioned that for the above estimate we
used the radius of the MION core as a particle of radius

R assuming water molecules can freely diffuse within the

dextran coat. In reality, such diffusion is hindered as

compared to the space outside the MION particle and

an ‘‘apparent’’ radius Rapp can be introduced (bigger

than the radius of the inner core 2.3 nm but smaller than

the external radius of MION 10 nm). According to the

validity criterion of the Gaussian approximation, the
latter provides the accuracy of 10% if

fp ¼ 3fD
4pcMR2

> 0:01: ð42Þ

The inequality (42) put a lower limit for the volume

fraction f, depending on the parameter p. For

2:3 < Rapp < 10 (nm), 9 < p < 19, the Gaussian ap-

proximation is valid (with accuracy to 10%) if
f > ð0:5	 1Þ � 10�3, or k > 30	 60mM.

Another possible experimental situation mentioned

above takes place when the volume fraction f being fixed
whereas the radius R of the magnetized inclusions varies.

As applied to nanocompounds, the condition (36) can

be re-written as

R <
75fD
pcM

� �1=2

: ð43Þ

As mentioned above, the characteristic diffusion time
tD for nanoparticles is much shorter than any reasonable

experimental time and the signal decays mono-expo-

nentially and can be described by the relaxation rate DR2

(or DR�
2). However, this description fails when nano-

particles are compartmentalized within cells with im-

permeable for them membranes (or oppositely,

nanoparticles are restricted to extracellular space). If the

cell concentration is small enough, a cell loaded by
nanoparticles should be considered as a single big mag-

netized ‘‘particle.’’ For a cell size �3 lm and D � 1lm2/

ms, the characteristic diffusion time is tD � 10ms. Recall

that even when t ¼ 100tD, the terms proportional to t1=2

in Eq. (19) substantially contribute to the signal attenu-

ation function, the latter is not linear in time and should

be described by the general expressions (15) and (16) or

their long-time approximations with non-linear terms in
t. The short-time behavior of the signal described by Eq.

(18) can be observed if t < tD.
For fixed cell�s size and volume fraction, the validity

condition of the Gaussian approximation (35) (10%

accuracy is assumed) puts an upper limit for the average

magnetization within a cell Mc ¼ fM (M is the magne-

tization of nanoparticles, f is their volume fraction

within a cell):

Mc <
75fcD
pcR2

c

; ð44Þ

where Rc; fc are the cell�s size and volume fraction. For

instance, for Rc ¼ 3lm, fc ¼ 0:01, D ¼ 1lm2/ms, Mc
should be less than 1mG. For higher magnetization, the
Gaussian approximation is inapplicable and the signal

can be described in the framework of the static de-

phasing regime [21]. This was recently demonstrated by

Bowen et al. [22] in experiments, in which superpara-

magnetic nanoparticles (SHU 555A, SHU 555C) were

compartmentalized within THP-1 cells.
7. Conclusion

In the present paper, we provided a detailed de-

scription of the FID and SE signals in the models of

impermeable spherical and impermeable cylindrical

sources of magnetic field inhomogeneities in the frame-

work of the Gaussian phase distribution approximation.

The expressions for the frequency correlation functions
GðtÞ and the signal attenuation functions CðtÞ are ob-

tained. For short times, the leading term in the FID

signal attenuation function is t2 similar to the case of

unrestricted diffusion. However, the next term behaves

as t3 as compared to t5=2 for the ‘‘permeable’’ case. For

SE signal the leading term is proportional to t3 in im-

permeable models as compared to t5=2 for unrestricted

diffusion. However, the t3 approximation can be used
for an adequate description of the SE signal only for

extremely short times compared to the characteristic

diffusion time tD.
In the long-time limit (motion narrowing regime), the

attenuation function in the impermeable sphere model

contains not only terms linear in time, but also terms

proportional to t1=2, as in the case of permeable spheres;

numerical coefficients are, however, different. The pres-
ence of t1=2 terms can be important for correct inter-

pretation of experimental data because the standard

mono-exponential description of the signal in terms of

the relaxation rate DR2 (or DR�
2) may not be adequate. In

the cylindrical geometry, the leading term in the long-

time expansion of the attenuation function is propor-

tional to t ln t for both permeable and impermeable

models also with different numerical coefficients.
Numerical (Monte–Carlo) simulations of the signal

and comparison with its Gaussian approximation en-

abled us to deduce a validity criterion of the Gaussian

approximation: f � p ¼ f � tc=tD > 1, where f is the vol-

ume fraction of the magnetized inclusions, tc and tD are

the characteristic dephasing and diffusion times, re-

spectively.
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Appendix A. The correlation function for the imperme-
able cylinder model

Let us consider the diffusion equation in the space

external to a cylinder of radius R. Introducing cylindri-

cal coordinates ðr;u; zÞ with the polar axis z along the

cylinder axis, the diffusion equation (6) for the propa-

gator P ðr; r0; tÞ has the form

oP
ot

¼ D � 1

r
o

or
r
oP
or

� �	
þ 1

r2
o2P
ou2

þ o2P
oz2



ðA:1Þ

with the initial condition Pðr; r0; 0Þ ¼ dðr� r0Þ and

boundary condition on the cylinder surface

oP
or

� �
r¼R

¼ 0: ðA:2Þ

As diffusion along the cylinder axis is unrestricted, the

solution of Eq. (A.1) can be factorized

P ðr;u; z; r0;u0; z0; tÞ ¼ Pzðz; z0; tÞ � P?ðr; r0;u;u0; tÞ;
ðA:3Þ

where the factor Pzðz; z0; tÞ describes free diffusion along

the z-axis

Pzðz; z0; tÞ ¼
1

4pDtð Þ1=2
exp

"
� ðz� z0Þ2

4Dt

#
ðA:4Þ

and the function P?ðr; r0;u;u0; tÞ describes restricted

diffusion in the basal plane. The latter can be sought in

the form:

P ðr; r0;u;u0; tÞ ¼
X1

m¼�1
fmðr; tÞ expðimuÞ; ðA:5Þ

where the functions fmðr; tÞ satisfy the equation

ofm
ot

¼ D � f 00
m

	
þ 1

r
f 0
m � m2

r2
fm



; f 0

mðr ¼ R; tÞ ¼ 0:

ðA:6Þ
Hereafter an upper prime means a derivative with

respect to the argument. Using the identity

dðr� r0Þ ¼
1

r0
dðr � r0Þdðu� u0Þdðz� z0Þ ðA:7Þ

the initial condition of Eq. (A.6) can be written in the

form

fmðr; 0Þ ¼
dðr � r0Þ
2pr0

expð�imu0Þ: ðA:8Þ

The Laplace transformation of the function fmðr; tÞ

�fmðr; pÞ ¼
Z 1

0

dtfmðr; tÞ expð�ptÞ; ðA:9Þ

satisfies the equation

p �fm � D � �f 00
m

	
þ 1

r
�f 0
m � m2

r2
�fm



¼ dðr � r0Þ

2pr0
expð�imu0Þ:

ðA:10Þ
A solution of Eq. (A.10) is a linear combination of
the modified Bessel function ImðkrÞ and KmðkrÞ with

k ¼ ðp=DÞ1=2:

�f ðr; pÞ ¼ C1ImðkrÞ þ C2KmðkrÞ þ
expð�imu0Þ

2pD

� ImðkrÞKmðkr0Þ; r < r0;
Imðkr0ÞKmðkrÞ; r > r0:

�
ðA:11Þ

The coefficients C1 and C2 are determined by the

boundary condition �f
0

mðr ¼ R; pÞ ¼ 0 and the finiteness

condition at r ! 1:

C1 ¼ 0; C2 ¼ � expð�imu0Þ
2pD

� Kmðkr0ÞI 0mðkRÞ
K 0

mðkRÞ
: ðA:12Þ

Thus, the Laplace transformation of the function

P?ðr; r0;u;u0; tÞ takes the form:

�P?ðr; r0;u;u0; pÞ ¼
X1

m¼�1

�fmðr; pÞ expðimuÞ

¼ 1

2pD

X1
m¼�1

expðimðu� u0ÞÞ

� Kmðkr0ÞI 0mðkRÞ
K 0

mðkRÞ
KmðkrÞ

	

þ ImðkrÞKmðkr0Þ; r < r0;
Imðkr0ÞKmðkrÞ; r > r0;

� 

:

ðA:13Þ
To calculate the correlation function GðtÞ, one should

perform the inverse Laplace transformation of the
function ~P? (A.13) and substitute the result in Eq. (4).

However, it is more convenient to calculate first the

Laplace transformation of the correlation function

�GðpÞ ¼
Z 1

0

dtGðtÞ expð�ptÞ

¼ 1

Ve

Z Z
dr1 dr0xðr1Þxðr0Þ �Pðr1; r0; pÞ

� �
:

ðA:14Þ
Substituting Eq. (A.13) into Eq. (A.14) and using the

explicit form of the magnetic field created by a magne-

tized cylinder

hðr;uÞ ¼ 2pDvH0 sin
2 a

R2

r2
cos 2u; r > R ðA:15Þ

(a is the angle between the cylinder�s axis and the external

field H0) the function �GðpÞ can be written in the form

�GðpÞ ¼ 45G0R2hsin4 ai
16D

�
Z 1

x

dy
y

Z 1

x

dy0
y0

� K2ðy0ÞK2ðyÞI 02ðxÞ
K 0

2ðxÞ

	

þ hðy0 � yÞI2ðyÞK2ðy0Þ þ hðy � y0ÞI2ðy0ÞK2ðyÞ


;

ðA:16Þ
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where G0 is given in Eq. (10), hðxÞ is the step-function,
and a dimensionless variable x ¼ kR ¼ ðp=DÞ1=2R is in-

troduced. Besides, we took into account thatZ 2p

0

du
Z 2p

0

du0 cos 2u cos 2u0 exp imðu½ � u0Þ�

¼ p2; m ¼ �2;
0; m 6¼ �2:

�

For the uniform distribution of the cylinder�s orienta-

tion, the distribution function for a is ðsin aÞ=2,
06 a6 p; hence, hsin4 ai ¼ 8=15.

Performing integrations in Eq. (A.16) and using the

identity

K1ðxÞI 02ðxÞ þ I1ðxÞK 0
2ðxÞ ¼ � 2

x2
;

we obtain

�GðpÞ ¼ G0tD � qðxÞ; qðxÞ ¼ 3

x4
K1ðxÞ
K 0

2ðxÞ

	
þ x2

2



: ðA:17Þ

For small and large argument, the function qðxÞ can
be approximated by

qðxÞ ’ 3ð� ln x� C þ 1=2þ ln 2Þ=8; x � 1;
3
4x2 1� 4

x2

� �
; x � 1:

�
ðA:18Þ

The correlation function GðtÞ in the time-domain can

be found by making use of the inverse Laplace trans-
formation of �GðpÞ (see Eq. (20) in the main text).
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